INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION

SET B

SEPTEMBER 2019

CLASS IX

Marking Scheme –MATHEMATICS

Q.	Answers	Marks
NO	Set B	(with
		split up)
	<u>SECTION A (20 x 1= 20)</u>	1 mark
		each for
1	. (c) 0. 3201	qns. 1-
		20
2	(a) A and C	
3	(c) quadrants I and II	
4	(d) -1	
5	(b) ΔCBA≅ΔPRQ	
6	(b) y-axis	
7	(b) 1	
8	(c) 120°	
9	(c) $\sqrt{2}x^2 - 3x + 6$	
10	(c) 47°	
11	P= 14	
12	50°	
13	1/5	
14	PR	
15	(-4, 5)	
16	a= -5	
17	120°	
18	9996	
19	0.3162	
20	60°	
21	<u>SECTION –B $(6 \times 2 = 12)$</u>	1m each
	(0, 0) (8, 0)	
22	$4x^2 + 1/4y^2 + 9z^2 - 2xy + 3yz - 12zx$ (OR)	
	$(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx)$ substituting the given values and we get	
	$x^2 + y^2 + z^2 = 35$	
23	Let x= 1.4777	1/2
	10x=14.777	'-
	100x=147.777 solving, we get x = 133/90	1 ½
	0, -0,	
24	-2x + 3y + 4 = 0, $5x + 7 = 0$	1 each
25	9x = 180° implies x= 20° smaller angle is 80° (OR)	1 each

	$X+ 10 X+ 40+2X-30^{\circ} = 180^{\circ}$ After solving we get, $x = 40^{\circ}$. angles of a triangle are 50°, 80° and 50° this implies triangle is an isosceles.	step
26	Given In $\triangle PSR$, Q is a point on the side SR such that $PQ = PR$. To prove $PS > PQ$	
	$R \stackrel{Q}{\longrightarrow} S$	
	Proof In $\triangle PRQ$, $PQ = PR$ [given	
	$\Rightarrow \qquad \angle R = \angle PQR \qquad($	
	[angles opposite to equal sides are equa	
	But $\angle PQR > \angle S$ (i	
	[exterior angle of a triangle is greater than each of the opposite interior angle	
	From Eqs. (i) and (ii), $\angle R > \angle S$ \Rightarrow $PS > PR$ [side opposite to greater angle is longer	
	⇒ PS > PR [side opposite to greater angle is longer ⇒ PS > PQ [:• PQ = PR	
	<u>SECTION – C $(8 \times 3 = 24)$</u>	
33	Construction – no. line	
28	a, c, e are irrationals, b, d, and f are rationals	
32	By remainder thm. $f(3) = g(3)$	
	27a +36 +9 -4 = 27 -12 +a	
	By Solving, we get a = -1 (OR)	
	$(a^3+b^3+c^3-3abc)=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]$ = 5 (5 ² - 3 x 10) = - 25	

30	A O S B
	Solution:
	Given: Line segments AB and CD intersect at O such that OA = OD and OB = OC.
	To prove: AC = BD
	Proof: In Δ AOC and Δ BOD, we have
	AO = OD [Given]
	∠AOC = ∠BOD [Vertically opposite angles are equal]
	OC = OB [Given]
	So, by Side-Angle-Side criterion of congruence, we have,
	\Rightarrow AOC \cong Δ BOD
	⇒ AC = BD [Since the corresponding parts of the congruent parts of the congruent triangles are equal]
31	y + 2y + 69 = 180° (linear pair) solving we get y = 37° $37^{\circ} + x + x + 13^{\circ} = 180^{\circ} \text{ (angle sum property of a triangle)}$ Implies $x = 65^{\circ}$ Therefore, the angles are 37° , 65° and 78° In $\triangle ABC$, $AB = AC$ implies $\angle B = \angle C$ In $\triangle ABE$ and $\triangle ACD$ $AB = AC$ $\angle B = \angle C$ BE = CD
	Therefore, $\triangle ABE \cong \triangle ACD$ (By SAS $\cong RULE$)
	AE = AD (CPCT)
27	Given, to prove, construction and proof.
29	Let the cost of a cake and a cookie be Rs. x and Rs. y
	150 =4x + 3y (0, 50), (6, 42), (3, 46) or any other solutions
34	(i) $(4z/3 - 1)^3$ (ii) $(2x + 5y) (4x^2 - 10xy + 25y^2)$
	SECTION- D (6 X 4 = 24)
39	Rationalizing the denominator and on simplification we get $a = 0$ and $b = -2$ $x = -1$ is a zero of the polynomial, quotient is $6x^2 - 13x + 5$
36	x = -1 is a zero of the polynomial, quotient is $6x - 13x + 5$ using splitting the middle term we get, $(x+1)(3x+5)(2x-1)$
37	Any three solutions
20	Pt.(3, 2) lies on the graph.
38	Given, figure, to prove and proof. (OR)

	$\angle QPS + x = \angle RPT$	
	$\angle QPS = 40^{\circ}$	
	$\angle QPS + x + x + 30^{\circ} = 90^{\circ}$	
	On solving we get $x = 10^{\circ}$	
35	Given, figure, to prove and proof.	
40	After plotting the points on the graph, we get trapezium and its area = 15 sq. units.	