INDIAN SCHOOL MUSCAT

HALF YEARLY EXAMINATION

SET B

SEPTEMBER 2019

CLASS IX

Marking Scheme -MATHEMATICS

$\begin{aligned} & \hline \text { Q. } \\ & \text { NO } \end{aligned}$	Answers Set B	Marks (with split up)
1	SECTION A (20 x $1=20$) (c) 0.3201	1 mark each for qns. 120
2	(a) A and C	
3	(c) quadrants I and II	
4	(d) -1	
5	(b) $\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$	
6	(b) y -axis	
7	(b) 1	
8	(c) 120°	
9	(c) $\sqrt{2} x^{2}-3 x+6$	
10	(c) 47°	
11	$\mathrm{P}=14$	
12	50°	
13	1/5	
14	PR	
15	(-4, 5)	
16	$\mathrm{a}=-5$	
17	120°	
18	9996	
19	0.3162	
20	60°	
21	$\frac{\text { SECTION -B }(6 \times 2=12)}{(0,0)(8,0)}$	1 m each
22	$\begin{aligned} & 4 x^{2}+1 / 4 y^{2}+9 z^{2}-2 x y+3 y z-12 z x \quad \text { (OR) } \\ & (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x) \text { substituting the given values and we get } \\ & x^{2}+y^{2}+z^{2}=35 \end{aligned}$	
23	$\begin{aligned} & \text { Let } x=1.4777 \ldots \\ & 10 x=14.777 \ldots \\ & 100 x=147.777 \ldots \text { solving, we get } x=133 / 90 \end{aligned}$	
24	$-2 x+3 y+4=0, \quad 5 x+7=0$	1 each
25	$9 \mathrm{x}=180^{\circ}$ implies $\mathrm{x}=20^{\circ}$ smaller angle is 80° (OR)	1 each

	$x+10 x+40+2 x-30^{\circ}=180^{\circ}$ After solving we get, $x=40^{\circ}$. angles of a triangle are $50^{\circ}, 80^{\circ}$ and 50° this implies triangle is an isosceles.	step
26	Given in $\triangle P S R, Q$ is a point on the side $S R$ such that $P Q=P R$. To prove $P S>P Q$ Proof $\ln \triangle P R Q$, $\begin{aligned} & P Q=P R \\ & \angle R=\angle P Q R \end{aligned}$ [giver \Rightarrow [angles opposite to equal sides are equa But $\angle P Q R>\angle S$ [exterior angle of a triangle is greater than each of the opposite interior angle From Eqs. (i) and (ii), $\angle R>\angle S$ \Rightarrow $P S>P R$ [side opposite to greater angle is longer \Rightarrow $P S>P Q$ $[\because P Q=P A$	
33	$\text { SECTION }-C(8 \times 3=24)$ Construction - no. line	
28	$\mathrm{a}, \mathrm{c}, \mathrm{e}$ are irrationals, b, d, and f are rationals	
32	By remainder thm. $f(3)=g(3)$ $27 a+36+9-4=27-12+a$ By Solving, we get $a=-1$ (OR) $\begin{aligned} \left(a^{3}+b^{3}+c^{3}-3 a b c\right) & =(a+b+c)\left[(a+b+c)^{2}-3(a b+b c+c a)\right] \\ & =5\left(5^{2}-3 \times 10\right) \\ & =-25 \end{aligned}$	

30		

	$\angle \mathrm{QPS}+\mathrm{x}=\angle \mathrm{RPT}$	
	$\angle \mathrm{QPS}=40^{\circ}$	
$\angle \mathrm{QPS}+\mathrm{x}+\mathrm{x}+30^{\circ}=90^{\circ}$		
On solving we get $\mathrm{x}=10^{\circ}$		
35	Given, figure, to prove and proof.	
40	After plotting the points on the graph, we get trapezium and its area $=15$ sq. units.	

